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Time Series Analysis of Annual Temperatures 
ERAT S. JOSEPH-Lafayette College, Easton, Pa. 

ABSTRACT-The time series of annual mean, maximum, Markov process was investigated. The analysis revealed 
and minimum temperatures at Boulder, Denver, Fort that the series of annual maximum temperatures a t  Fort 
Collins, and Pueblo, Colo., were analyzed to  determine Collins, and those of annual minimum temperatures a t  
whether or not they are randomly distributed. Tests were Fort Collins and Pueblo are purely random (white noise). 
performed by means of autocorrelation function and For the remaining nine series, the values of autocorrelation 
power spectrum. For series with significant first-order function rl are significant, and a first-order Markov model 
serial correlation coefficient, the adequacy of a first-order seems adequate. 

1. INTRODUCTION 

A time series consists of observations arranged sequen- 
tially with respect to time. Yule (1921) and others noted 
that the time series of many natural phenomena belong 
to periodic, moving average, or autoregressive processes. 
Landsberg et al. (1959), Polowchak and Panofsky (1968), 
and others applied spectrum theory to the time series of 
daily, weekly, and monthly temperatures. 

A time series is said to be randomly distributed if each 
event is statistically independent of all preceding and 
succeeding events. Many hydrometeorological processes 
are characterized by dependent events. Though de- 
pendence is sometimes considered a nuisance, its analysis 
often yields fruitful results. 

2. TEST A: ANALYSIS OF 
AUTOCORRELATION FUNCTION 

The autocorrelation function is the ratio of the auto- 
covariance to the variance. In a time series with n data 
points, it  may be estimated by 

where rk  stands for the autocorrelation function of order k .  
The first-order autocorrelation function r1 can be used to 
test whether the time series is purely random (white 
noise). Anderson ( 1941) developed confidence limits 
(C.L.) for r1 on the basis of a circularly defined auto- 
correlation. He showed that, for a random normal series, 
T~ is approximately normally distributed with mean 

(-l)/(n-1) and variance (7~-2)/(n-l)~, and, hence, 

- l & z a & 7 i  C.L. [Tl]’ n-1 

where z, is the standard normal variate corresponding to 
significance level CY. When n is large, the probability dis- 
tribution of T~ can be taken to be normal with mean zero 
and variance l/n. If the estimated value of r1 falls outside 
the confidence limits of equation 2, then r1 is treated as 
significantly different from zero. Equation 2 may also be 
used to test the significance of rk for k>l if k is small 
relative to n (Matalas 1966). 

A plot of rk against k is called a correlogram. The shape 
of a correlogram, in principle, reveals the nature of a pro- 
cess. For a periodic process, the correlogram is periodic; 
for a moving average process, it  vanishes; and for an auto- 
regressive process, it is exponential. For a first-order 
Markov process, rk=rlc, and the correlogram “decays” 
exponentially. Usually, when the number of data points 
is small, the correlogram fails to damp as expected be- 
cause the observed autocorrelation functions are subject 
to inflation due to sampling errors. 

3. TEST 6: ANALYSIS OF POWER SPECTRUM 

Power spectrum is the Fourier transform of the auto- 
covariance function. Estimates of spectral densities can 
be used to test whether or not an observed time series 
could be regarded as the realization of a certain process. 

The raw estimates of the power spectrum for maximum 
lag, m, are computed by 

77Z-1 

Lp=- w,+2 c w ,  cos C$)+Wm cos (4 (3) 
7r ’[ q=1 

where w p  is the autocovariance function at lag p .  The raw 
spectrum is smoothed to yield 

UP=0.23&1 f0.54Lp +0.23&1. (4) 
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TABLE 1 .-Significance of first-order serial correlation coeficients 

the null continuum, U*, is approximately given by 40 

Estimated rl far indicated series 

Annual mean Annual maximum Annual minimum 
temperature temperature temperature 

Station Length of record, n 90percent C.L.[rJ 

---- _ _  _ _  - _ _ _ _ _ _ _ _ _ _ _ - _ _  9 5 %  C-L. - 

Boulder 
Denver 
Fort Collins 
Pueblo 

73 
99 
82 
82 

0.393 0.387 0. 196 -0.207 0. 179 
. 194 .305 .392  - . 176 . 155 
. 329 . 136 - .002 - . 194 . 169 
.367 .226 .023 - . 194 . 169 

To determine whether the spectrum represents a certain 4 ,  
process, we fit a null continuum (i.e., the spectrum accord- 
ing to a null hypothesis) and compare its local value to 
the spectral estimates at that wavelength. 

not sigdicantly different from zero, the null hypothesis 
is a white noise process. The spectrum of a purely random 
time series is a horizontal straight line with amplitude the 
same everywhere. Thus, the appropriate null continuum 
for a white noise process is a horizontal straight line with 

t.r 

; 
w rA w 

Usually, when the first-order autocorrelation function is cl 2 

irl 

2 

0 
Frequency 0.25 0.5 

The confidence band for the spectrum of an assumed 
process is obtained by multiplying values of the null con- 
tinuum by x:(Y)/v  and X ; - = ( V ) / Y ,  where Y is the equivalent 
degree of freedom. Here, ~ = 2 n / m ;  n is the number of data 
points, and m is the maximum number of lags. (For de- 
tailed information see Jenkins 1961, Granger and Hatan- 
aka 1964, and Mitchell 1966.) If none of the spectral esti- 
mates departs significantly from the null continuum; 
that is, if none falls outside the confidence band, the 
hypothesis of the adequacy of the assumed model is 
accepted. 

4. RESULTS OF ANALYSIS 

The time series of annual mean, maximum, and mini- 
mum temperatures a t  Boulder, Denver, Fort Collins 
and Pueblo, Colo., were analyzed. These stations have 
relatively long records. 

For the 12 series, the estimated values of the first-order 
autocorrelation functions with 90-percent confidence 
limits are tabulated in table 1. Ba.sed on the significance of 
rl ,  the hypothesis of randomness was rejected by all 
except three series. Tests for the white noise process were 

Frequency 0.25 0 . 5  

Ei op I I 

Frequency 0 .25  0 .5  

FIGURE 1.-White noise continuum with confidence limits and spec- 
tra of (A) annual maximum temperature at Fort Collins, (B) 
annual minimum temperature at Fort Collins, and (C) annual 
minimum temperature at Pueblo. 

performed on these three series using power spectrum and 
are graphically illustrated in figure 1. Those series with 
significant rl were tested for a first-order Markov process. 
Plots of estimated spectral densities for a minimum lag 15 
with the confidence limits of the red noise continuum 
are shotm-in figure 2. 
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FIGURE 2.-Markov red noise continuum with confidence limits and spectra of annual mean temperature a t  (A) Boulder, (B) Denver, 
(C) Fort Collins, and (D) Pueblo; spectra of annual maximum temperature a t  (E) Boulder, (F) Denver, and (G) Pueblo; and spectra 
of annual minimum temperature at (H) Boulder and (I) Denver. 

June1973 1 Joseph 1 503 



5. CONCLUSION REFERENCES 

The investigation revealed that the series of annual 
maximum temperatures at  Fort Collins and those of 
annual minimum temperatures at  Fort Collins and Pueblo 
are purely random (white noise). For the remaining nine 
series, the values of autocorrelation function rl are 
significant, and a first-order Markov model seems 
adequate. The available data points in the series are not 
long enough to distinguish between apparent time 
trends and chance events. 
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